#MAASL00262

a) Use Geometric Sequence Formula to find the value of the term:

u_{n}=u_{1}r^{n-1}

u_{9}=24(\frac{1}{4})^{9-1}

u_{9}=24(\frac{1}{4})^{8}

u_{9}=3.662\times10^{-4}



b) Use Sum of a geometric sequence formula:

S_{n}=\frac{u_{1}}{1-r}

S_{n}=\frac{24}{1-\frac{1}{4}}

S_{n}=32



c) Use the arithmetic sequence formula to algebraically solve:

u_{n}=u_{1}+(n-1)d

We are given the sixth term, so set u_{6}=-2

-2=-12+(6-1)d

10=5d

d=2



d) Consider the sum of an arithmetic series formula:

S_{n}=\frac{n}{2}(u_{1}+u_{n})

However, we have no expression for u_{n}

First, derive the full expression for u_{n}.

u_{n}=u_{1}+(n-1)d

u_{n}=-12+(n-1)2

Simplify as much as possible

u_{n}=-12+2n-2

u_{n}=2n-14

Substitute back into sum of an arithmetic series formula:

S_{n}=\frac{n}{2}(-12+2n-14)

S_{n}=\frac{n}{2}(-26+2n)

Factor to simplify and have the ability to cancel 2

S_{n}=\frac{n}{2}2(-13+n)

S_{n}=n(-13+n)

S_{n}=-13n+n^{2}



e) Sum of infinite geometric sequence from part b: 32

Use the expression for the sum of the arithmetic formula in part d

32=2(-13n+n^{2})

16=-13n+n^{2}

0=n^{2}-13n-16

Use the quadratic formula:

n=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}

Set a=1 ; b=-13 ; c=-16

n=\frac{13\pm\sqrt{(-13)^{2}-4(1)(-16)}}{2(1)}

n=\frac{13\pm\sqrt{169+64}}{2}

n=\frac{13\pm\sqrt{233}}{2}

n= 14.132 ; n=-1.132

Ignore the negative

n=14.132

Share the joy with your friends:

Share on facebook
Facebook
Share on twitter
Twitter
Share on reddit
Reddit
Share on whatsapp
WhatsApp
Share on email
Email