#MAASL00269

a) Divide consecutive terms in the sequence: \frac{57.0375}{87.75}

r=0.65



b) Use the sum of the geometric series formula:

S_{n}=\frac{u_{1}(r^{n}-1)}{r-1}, where r\neq1

Substitute: u_{1}=87.75 ; r=0.65 ; n=13

S_{9}=\frac{87.75(0.65^{9}-1)}{0.65-1}

S_{9}=\frac{-85.932}{-0.35}

S_{9}=245.5

Share the joy with your friends:

Share on facebook
Facebook
Share on twitter
Twitter
Share on reddit
Reddit
Share on whatsapp
WhatsApp
Share on email
Email